Powering the trusted identities of the world's people, places & things

NFIQ 2 Introducing tools to retrain the classifier

Version 5

About HID (formerly Crossmatch is part of HID)

HID Global powers the trusted identities of the world's people, places and things

DISCLAIMER: Be careful what you wish for!

• When adapting the NFIQ 2, potential interoperability problems needs to be addressed!

NFIQ 2 ≢ NFIQ 2

- Revised NFIQ 2 contains enhancements to mitigate interoperability problems (classifier model as part of the version number)
- The interoperability risk still exists!

How does a quality assessment work?

- Before we discuss improvements, we need to understand how it works
- Need to open the "black box"
- Understand the architecture of NFIQ 2

Our goal: providing tools for advanced users

This slide uses artificial prints!

Inside NFIQ 2

- NFIQ 2 uses 69 features which were manually selected and validated
- The classification is done with a random forest model
- The tools will allow to retrain the classifier
- The selected features will be kept unchanged

This slide uses artificial prints!

Inside the Random Forest

- Random forest is a collection of decision trees (forest)
- Each decision tree uses a random subset of the feature vector (feature bagging)
- Every decision tree has one vote for the final classification

Powering **Frusted Identities**

NFIQ 2 random forest parameters

- Binary classification
- 100 decision trees (score values from 0 ... 100)
- Active features per decision tree 10 (out of 69)

The training process

Training tools inventory

- Feature extraction
 - Command line executable "nfiq2-calc-features.exe"
 - Using the same function of NFIQ 2, but without using classification
 - Result: semicolon separated string with the sorted feature values (CSV)
- Input preparation and feature annotation
 - Out of scope, must be provided by the operator
 - Sample implementation based on a shell script file
 - Appending the ground truth classification (0,1) to the CSV feature string from the feature extraction
 - Collect all CSV strings into a text file (line by line)
- Training and Probing
 - Command line executable "nfiq2-train-classifier.exe"
 - Performs iterative operation
 - Train
 - Probe
 - Repeat if convolution matrix contains errors

Adapt as needed

Source code repository (GIT)

- Using the original NFIQ2 from NIST as Git Submodule to de-couple dependencies
- Link to the NFIQ2-Extended Repository
 - Accessible for Biometric Experts of ISO/IEC SC37

Git Repository NFIQ2-Extended

build-scripts Convenient shell scripts for building

cli-example Source code for the command line executables

mingw-std-threads Git Submodule

Origin: <u>https://github.com/meganz/mingw-std-threads.git</u>

NFIQ2Core

Git Submodule Origin: <u>https://github.com/usnistgov/NFIQ2.git</u>

NFIQ2Training Source code for the training process

sample-data Artificial sample data for testing

Build artefacts

• The build artefacts will also contain the libraries from the NFIQ2 core build

Git Repository NFIQ2-Extended

build/<platform> Temporary build folder used by CMake

dist/<platform> Build results/artefacts

bin CLI executables and NFIQ2 Library (DLL), shell scripts

cfg Configuration files (RF model, training parameters)

data Artificial sample data

include NFIQ2 core headers

lib NFIQ2 core libraries

Prepare the probe and training data

- calc-features.sh shell script: ٠
- data: ٠
- artificial sample data for training and probe
- ground truth: derived from sample data file name (normal:=1, wet and dry:=0) •
- output: ٠

csv files for training and probe

M /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin

 \Box alph.Lessmann@j-r-lessmann-01 MINGW64 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin \$./calc-features.sh NFIQ2 feature calculation /d/Devel/NFI02/NFI02-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Dry-2064064.bmp -> ground truth: category 0 /d/Deve]/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Dry-2064128.bmp -> ground truth: category 0 /d/Devel/NFI02/NFI02-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Dry-3064064.bmp -> ground truth: category 0 /d/Devel/NFI02/NFI02-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Dry-3064128.bmp -> ground truth: category 0 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Normal-2064064.bmp -> ground truth: category 1 /d/Deve]/NFIO2/NFIO2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Normal-2064128.bmp -> ground truth: category 1 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Normal-3064064.bmp -> ground truth: category 1 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Normal-3064128.bmp -> ground truth: category 1 /d/Devel/NFI02/NFI02-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Wet-2064064.bmp -> ground truth: category 0 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Wet-2064128.bmp -> ground truth: category 0 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Wet-3064064.bmp -> ground truth: category 0 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-Arch-Wet-3064128.bmp -> ground truth: category 0 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-DoubleLoop-Dry-2064064.bmp -> ground truth: category O /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-DoubleLoop-Dry-2064128.bmp -> ground truth: category 0 /d/Deve]/NFIO2/NFIO2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-DoubleLoop-Dry-3064064.bmp -> ground truth: category 0 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-DoubleLoop-Dry-3064128.bmp -> ground truth: category O /d/Devel/NFI02/NFI02-cmt/dist/win64/bin/../data/dataset-1/fp-LeftIndex-Plain-DoubleLoop-Normal-2064064.bmp -> ground truth: category 1

 \times

Perform training

- shell script: train-classifier.sh
- data: csv files for training and probe
- parameters:

Powering Trusted Identities

H

• output: the second se

nfiq2_training.cfg training details, convolution matrix, RF model

M /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin	_	×
Ralph.Lessmann@j-r-lessmann-01 MINGW64 /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin \$./train-classifier.sh NFIQ2 train random forest		Î
_ configure		
using training parameters from file D:\Devel\NFIQ2\NFIQ2-cmt\dist\win64\bin\\cfg\nfiq2_training.cfg		
_ prepare		
using training data from file D:/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin//data/features-category-1.csv using probe data from file D:/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin//data/features-category-2.csv		
_ train		
using 1440 sets of training data with 69 features each run training (new random seed), attempt 1 of 100 run training (new random seed), attempt 2 of 100 run training (new random seed), attempt 3 of 100		~

Training output

• output: iteration, *training error, out of bag error and feature importance*

M /d/Devel/NFIQ2/NFIQ2-cmt/dist/win64/bin		– 🗆 ×
_ train		· · · · · · · · · · · · · · · · · · ·
using 1440 sets of training data with 69		
run training (new random seed), attempt		
run training (new random seed), attempt		
run training (new random seed), attempt run training (new random seed), attempt		
run training (new random seed), attempt		
run training (new random seed), attempt		
run training (new random seed), attempt		
training error := 0.00 %		
out-of-bag error := 0.00190		
_ feature importance		
FDA_Bin10_0	:= 0.01410 -> 1.41 %	
FDA_Bin10_0 FDA_Bin10_1	:= 0.01341 -> 1.34 %	
FDA_Bin10_1 FDA_Bin10_2	:= 0.01341 -> 1.34 % := 0.01160 -> 1.16 %	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3	:= 0.01341 -> 1.34 % := 0.01160 -> 1.16 % := 0.01100 -> 1.10 %	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3 FDA_Bin10_4	:= 0.01341 -> 1.34 % := 0.01160 -> 1.16 % := 0.01100 -> 1.10 % := 0.01139 -> 1.14 %	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3 FDA_Bin10_4 FDA_Bin10_5	:= 0.01341 -> 1.34 % := 0.01160 -> 1.16 % := 0.01100 -> 1.10 % := 0.01139 -> 1.14 % := 0.01090 -> 1.09 %	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3 FDA_Bin10_4 FDA_Bin10_5 FDA_Bin10_6	:= 0.01341 -> 1.34 % := 0.01160 -> 1.16 % := 0.01100 -> 1.10 % := 0.01139 -> 1.14 % := 0.01090 -> 1.09 % := 0.01085 -> 1.09 %	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3 FDA_Bin10_4 FDA_Bin10_5 FDA_Bin10_6 FDA_Bin10_7	:= 0.01341 -> 1.34 % := 0.01160 -> 1.16 % := 0.01100 -> 1.10 % := 0.01139 -> 1.14 % := 0.01090 -> 1.09 % := 0.01085 -> 1.09 % := 0.01175 -> 1.18 %	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3 FDA_Bin10_4 FDA_Bin10_5 FDA_Bin10_6 FDA_Bin10_7 FDA_Bin10_8	:= 0.01341 -> 1.34 % := 0.01160 -> 1.16 % := 0.01100 -> 1.10 % := 0.01090 -> 1.09 % := 0.01085 -> 1.09 % := 0.01175 -> 1.18 % := 0.02050 -> 2.05 %	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3 FDA_Bin10_4 FDA_Bin10_5 FDA_Bin10_6 FDA_Bin10_7 FDA_Bin10_8 FDA_Bin10_9	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3 FDA_Bin10_4 FDA_Bin10_5 FDA_Bin10_6 FDA_Bin10_7 FDA_Bin10_8 FDA_Bin10_9 FDA_Bin10_Mean	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
FDA_Bin10_1 FDA_Bin10_2 FDA_Bin10_3 FDA_Bin10_4 FDA_Bin10_5 FDA_Bin10_6 FDA_Bin10_7 FDA_Bin10_8 FDA_Bin10_9	$\begin{array}{llllllllllllllllllllllllllllllllllll$	

Probe output

• output: convolution matrix and error rates

M /d/Devel/NFI	Q2/NFIQ2-cmt/dist/wii	n64/bin
_ probe		
using 2160 set	s of probe data	
	Expected True	Expected False
Predicted True	720	o
 Predicted False	0	 1440
false negative	error rate := 0.(error rate := 0.(30 %
	te := 0.(x 00
230 - ## ##		
150 - ## ###		
100 - ####		
#### 70 - #####		
#####		
50 - ##### #####		

Probe output

• output: score histogram, exported RF model (with hash)

- ####													##	·		
####													##			
- ####	#												##			
####	#												##			
- ####	#												####			
####	#												# ####			
- ####	##												######			
####	###												######			
####	###												#######			
- ####	#####											#	########			
####	#####											#	########			
####	#####											# # #	########			
- ####	#####										#	#### #	########			
####	###### #										# #	######	########			
####	###### #										### #	########	########			
####	######## # #									ą	* ######	########	########			
####	######## # #									ą	* ######	########	*#######			
####	################								#	ą	* ######	########	*#######			
####	################	# ;	#	#					# #	# ## ;	*#######	########	*#######			
####	###############	# ;	#	#					# #	# ## ;	*#######	########	*#######			
####	##################	* # # # ;	# #	# #	#	#	#	# ##	# ###	#######	*#######	########	*#######			
####	###################	###;	# #	# #	#	#	#	# ##	# ###	#######	*#######	########	*#######			
####	###################	* # # # ;	# #	##	#	#	#	# ##	# ###	#######	*#######	########	*#######			
+-		·						-								
0	10 2	20	30		- 40)	50	60	7	0	80	90	100			

exported random forest to: rtree-model-345c60e5f72e8a7b581e0f43c536ed8f.yaml

Achievements

- Common training tools for the NFIQ2 are available
- Re-training the classifier is considered as a task for advanced users
- Re-training shall only be executed if the necessity was proven and justified
- Consider potential interoperability impact before attempting a re-training
- It is recommended to inform ISO/IEC JTC1 SC37 and NIST about any retraining attempt

Next steps

 Consider together with ISO/IEC JTC1 SC37 and NIST on how to make the repository for the training tools available

Out of scope

- Modification of the NFIQ2 feature vector
- Modification of the training tools to fetch the data from databases etc.

Question and Answers

Ralph Lessmann

Director Software Solutions HID Global

Mobile +49 (0) 172 370 1615 ralph.lessmann@hidglobal.com

Cross Match Technologies GmbH Unstrutweg 4 D-07743 Jena

Affiliations

European Association for Biometrics Chair of the Industry Special Interest Group

ISO/IEC JTC1 SC 37 (National Body Germany) Working Group 3 & 4

Thank you hidglobal.com